Abstract
Antibiotic resistance is a major global public health threat, particularly alarming in resource-limited settings. This study aimed (i) to assess the epidemiological profile of bacterial resistance in a local context, and (ii) to test an innovative approach based on the synthesis of biogenic copper nanoparticles (Cu-NPs) derived from Kalanchoe pinnata. A microbiological survey identified Escherichia coli, Klebsiella pneumoniae, and Enterobacter sp. as the main resistant strains, with partial susceptibility to nitrofurantoin, ciprofloxacin, and gentamicin. The Cu-NPs, characterized by X-ray diffraction and fluorescence, revealed the presence of Cu, Sr, Fe, and Ca. Although their standalone activity was limited according to the antibiogram, their combination with ciprofloxacin significantly enhanced antibacterial efficacy, particularly against E. coli and K. pneumoniae. Moreover, the photodynamic method showed increased potential of Cu-NPs, especially when associated with a photosensitizer (5-Bromo-2-Nitrovanillin). These findings suggest that K. pinnata may represent a promising source of nanomaterials with synergistic activity alongside selected antibiotics and photodynamic approaches. To maximize impact, the following are recommended: (1) strengthening national surveillance of bacterial resistance through accredited laboratory networks; (2) integrating green nanomaterials into translational research programs; (3) promoting policies for the rational use of antibiotics to reduce selective pressures; and (4) supporting interdisciplinary research linking ethnopharmacology and nanotechnology in the fight against multidrug-resistant strains.
References
1. Ahmad, N., Joji, R. M., & Shahid, M. (2022). Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Frontiers in Cellular and Infection Microbiology, 12, 1065796.
2. Alshammari, S. O., Mahmoud, S. Y., & Farrag, E. S. (2023). Synthesis of green copper nanoparticles using medicinal plant Krameria sp. root extract and its applications. Molecules, 28(12), 4629.
3. Assis de Andrade, E., Machinski, I., Terso Ventura, A. C., Barr, S. A., Pereira, A. V., & Beltrame, F. L. (2023). A review of the popular uses, anatomical, chemical, and biological aspects of Kalanchoe (Crassulaceae): A genus of plants known as “Miracle Leaf.” 28(14).
4. Basosila, N. B., Mukomena, E., Mbembo-Wa-Mbembo, B., Masengo, C. A., & Ngbolua, K.-T.-N. (2024). Efficacy of silver nanoparticles from Jatropha curcas leaf extracts against pyrethroid-resistant Anopheles gambiae. Orapuh Journal, 5(5), e1147. https://doi.org/10.4314/orapj.v5i5.47.
5. Basosila, N. B., Inkoto, C. L., Maganga, O. M., Mbembo, B., Kasiama, G. N., Kabengele, C., Falanga, C. M., Masengo, C. A., Mpiana, P. T., & Ngbolua, K.-T.-N. (2023). Biogenic synthesis, spectroscopic characterization and bioactivity of Cymbopogon citratus derived silver nanoparticles. Journal of Advanced Science and Nanotechnology, 3(4), 33–41. https://doi.org/10.53293/jasn.2023.7012.1226
6. Basosila, N. B., Mukomena, E., Mbembo-Wa-Mbembo, B., Masengo, C. A., & Ngbolua, K.-T.-N. (2024). Efficacy of silver nanoparticles from Jatropha curcas leaf extracts against pyrethroid-resistant Anopheles gambiae. Orapuh Journal, 5(5), e1147. https://doi.org/10.4314/orapj.v5i5.47
7. BENMALEK, K., & MEGHZILI, K. Etude de la résistance aux antibiotiques chez les entérobactéries isolées de différents liquides de ponctions au niveau de l’hôpital pédiatrique El Mansourah Constantine.
8. Brown, A. N., Smith, K., Samuels, T. A., Lu, J., Obare, S. O., & Scott, M. E. (2012). Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Applied and Environmental Microbiology, 78(8), 2768–2774.
9. Bunduki, G. K., Katembo, J.-L. M., & Kamwira, I. S. (2020). Antimicrobial resistance in a war-torn country: Lessons learned in the Eastern Democratic Republic of the Congo. One Health, 9, 100120.
10. Das, S., Sinha, S., Das, B., Jayabalan, R., Suar, M., Mishra, A., Tamhankar, A. J., Stålsby Lundborg, C., & Tripathy, S. K. (2017). Disinfection of multidrug resistant Escherichia coli by solar-photocatalysis using Fe-doped ZnO nanoparticles. Scientific Reports, 7(1), 104.
11. Davari Abad, E., Khameneh, A., & Vahedi, L. (2019). Identification phenotypic and genotypic characterization of biofilm formation in Escherichia coli isolated from urinary tract infections and their antibiotics resistance. 12(1), 796.
12. Faundes-Gandolfo, N., Jara-Gutiérrez, C., Párraga, M., Montenegro, I., Vera, W., Escobar, M., Madrid, A., Valenzuela-Valderrama, M., & Villena, J. (2024). Kalanchoe pinnata (Lam.) Pers. leaf ethanolic extract exerts selective anticancer activity through ROS-induced apoptotic cell death in human cancer cell lines. BMC Complementary Medicine and Therapies, 24(1), 269.
13. Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), 269–284.
14. Fuzi, M., Szabo, D., & Csercsik, R. (2017). Double-serine fluoroquinolone resistance mutations advance major international clones and lineages of various multi-drug resistant bacteria. Frontiers in Microbiology, 8, 2261.
15. Gawande, M. B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chemical Reviews, 116(6), 3722–3811.
16. Hamouda, R. A., Alharthi, M. A., & Alotaibi, A. S. (2023). Biogenic nanoparticles silver and copper and their composites derived from marine alga Ulva lactuca: Insight into the characterizations, antibacterial activity, and anti-biofilm formation. 28(17).
17. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650.
18. Irenge, L. M., Kaboru, J.-B., Buhendwa, J., Mbwele, B., Ilunga, M., & Gala, J.-L. (2014). Antimicrobial resistance in urinary isolates from inpatients and outpatients in Bukavu General Hospital, South-Kivu, Democratic Republic of Congo. BMC Research Notes, 7, 374. https://doi.org/10.1186/1756-0500-7-374
19. Irenge, L. M., Kabego, L., Kinunu, F. B., Itongwa, M., Mitangala, P. N., & Gala, J.-L. (2015). Antimicrobial resistance of bacteria isolated from patients with bloodstream infections at a tertiary care hospital in the Democratic Republic of the Congo. South African Medical Journal, 105(9), 752–755. https://doi.org/10.7196/SAMJnew.8189
20. Kah, G., Chandran, R., & Abrahamse, H. (2023). Biogenic silver nanoparticles for targeted cancer therapy and enhancing photodynamic therapy. Cells, 12(15), 2012.
21. Karunakaran, G., & Sudha, K. G. (2023). Biosynthesis of nanoparticles from various biological sources and its biomedical applications. 28(11).
22. Kabengele, C. N., Kasiama, G. N., Ngoyi, E. M., Inkoto, C. L., Bete, J. M., Babady, P. B., Tshibangu, D. S. T., Tshilanda, D. D., Kalele, H. M., Mpiana, P. T., & Ngbolua, K.-T.-N. (2023). Biogenic synthesis, characterization and effects of Mn-CuO composite nanocatalysts on methylene blue photodegradation and human erythrocytes. AIMS Materials Science, 10(2), 356–369. https://doi.org/10.3934/matersci.2023019
23. Kasiama, G. N., Kabengele, C. N., Kilembe, J. T., Kitadi, J. M., Mifundu, M., Ngbolua, J. P., Tshibangu, D. S. T., Tshilanda, D. D., & Tshimankinda, P. T. (2023). Green synthesis, characterization and evaluation of biological activities of Ag-MnO nanocomposites from Cyttaranthus congolensis. Diyala Journal of Engineering Sciences, 16(3), 24–36. https://doi.org/10.24237/djes.2023.16303
24. Khan, I., Khan, I., Usman, M., Imran, M., & Saeed, K. (2020). Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. Journal of Materials Science: Materials in Electronics, 31(11), 8971–8985.
25. Klausen, M., & Ucuncu, M. (2020). Design of photosensitizing agents for targeted antimicrobial photodynamic therapy. 25(22).
26. Lai, C. K. C., Ng, R. W. Y., Leung, S. S. Y., Hui, M., & Ip, M. (2022). Overcoming the rising incidence and evolving mechanisms of antibiotic resistance by novel drug delivery approaches – An overview. Advanced Drug Delivery Reviews, 181, 114078.
27. Li, B., Liao, Y., Su, X., Chen, S., Wang, X., Shen, B., Song, H., & Yue, P. (2023). Powering mesoporous silica nanoparticles into bioactive nanoplatforms for antibacterial therapies: Strategies and challenges. Journal of Nanobiotechnology, 21(1), 325.
28. Lucky, S. S., Soo, K. C., & Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical Reviews, 115(4), 1990–2042.
29. Lupande-Mwenebitu, D., Kalonda, A., Kayembe, J., Kazadi, T., & Ceyssens, P.-J. (2020). Current status of resistance to antibiotics in the Democratic Republic of Congo: A review. Journal of Global Antimicrobial Resistance, 22, 45–54. https://doi.org/10.1016/j.jgar.2020.03.016
30. Majoumouo, M. S., & Sharma, J. R. (2020). Synthesis of biogenic gold nanoparticles from Terminalia mantaly extracts and the evaluation of their in vitro cytotoxic effects in cancer cells. 25(19).
31. Nasrollahian, S., Graham, J. P., & Halaji, M. (2024). A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Frontiers in Cellular and Infection Microbiology, 14, 1387497.
32. Ngbolua, K.-T.-N., Bongo, G. N., Domondo, A., Nsimba, B., Iteku, J., Lengbiye, E., Ashande, C., Claudine, T., Inkoto, C., Lufuluabo, L., Kilunga, P., Gafuene, G., Mulaji, C., Mbemba, T., Poté, J., & Mpiana, P. T. (2018). Synthesis and bioactivity of silver nanoparticles against bacteria (E. coli and Enterococcus sp.) isolated from Kalamu River, Kinshasa City, Democratic Republic of the Congo. Frontiers in Environmental Microbiology, 4(1), 29–40. https://doi.org/10.11648/j.fem.20180401.15
33. Ovais, M., Khalil, A. T., Raza, A., Islam, N. U., Ayaz, M., Saravanan, M., Ali, M., Ahmad, I., Shahid, M., & Shinwari, Z. K. (2018). Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Applied Microbiology and Biotechnology, 102(10), 4393–4408.
34. Pan, C., Wang, X., Xie, Y., Wei, C., Sun, X., Zhang, S., Yu, X., Chen, X., Chen, X., Tuo, C., Pan, J., Fang, Z., & Chen, J. (2024). Involvement of UDP-glycosyltransferase of Kalanchoe pinnata (Lam.) Pers in quercitrin biosynthesis and consequent antioxidant defense. Plant Physiology and Biochemistry, 217, 109274.
35. Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31(4).
36. Perfileva, A. I., Sukhov, B. G., Kon'kova, T. V., Strekalovskaya, E. I., & Krutovsky, K. V. (2025). Diversity of copper-containing nanoparticles and their influence on plant growth and development. Plant Physiology and Biochemistry, 220, 109575.
37. Rispoli, F., Angelov, A., Badia, D., Kumar, A., Seal, S., & Shah, V. (2010). Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. Journal of Hazardous Materials, 180(1–3), 212–216.
38. Sharma, D., Kanchi, S., & Bisetty, K. (2019). Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 12(8), 3576–3600.
39. Silago, V., Moremi, N., Mtebe, M., Komba, E., Masoud, S., Mgaya, F. X., Mirambo, M. M., Nyawale, H. A., Mshana, S. E., & Matee, M. I. (2022). Multidrug-resistant uropathogens causing community-acquired urinary tract infections among patients attending health facilities in Mwanza and Dar es Salaam, Tanzania. Antibiotics, 11(12), 1718. https://doi.org/10.3390/antibiotics11121718
40. Uddin, T. M., A. J. Chakraborty, A. Khusro, B. R. M. Zidan, S. Mitra, T. B. Emran, K. Dhama, M. K. H. Ripon, M. Gajdács and M. U. K. Sahibzada (2021). "Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects." Journal of infection and public health 14(12): 1750-1766.
41. Yazdanian, M., P. Rostamzadeh, M. Rahbar, M. Alam, K. Abbasi, E. Tahmasebi, H. Tebyaniyan, R. Ranjbar, A. Seifalian and A. Yazdanian (2022). "The potential application of green‐synthesized metal nanoparticles in dentistry: A comprehensive review." Bioinorganic Chemistry and Applications 2022(1): 2311910.
42. GOLDSTEIN, Joseph I., NEWBURY, Dale E., MICHAEL, Joseph R., et al. Qualitative elemental analysis by energy dispersive X-ray spectrometry. In : Scanning electron microscopy and X-ray microanalysis. New York, NY : Springer New York, 2017. p. 265-287.
43. SONGCA, Sandile Phinda et ADJEI, Yaw. Applications of antimicrobial photodynamic therapy against bacterial biofilms. International journal of molecular sciences, 2022, vol. 23, no 6, p. 3209.
44. Brown, A. N., K. Smith, T. A. Samuels, J. Lu, S. O. Obare and M. E. Scott (2012). "Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus." Appl Environ Microbiol 78(8): 2768-2774
45. Yu, Z., Q. Li, J. Wang, Y. Yu, Y. Wang and Q. Zhou (2020). "Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field." 15(1): 115.
46. Vasiliev, G., A. L. Kubo, H. Vija, A. Kahru, D. Bondar, Y. Karpichev and O. Bondarenko (2023). "Synergistic antibacterial effect of copper and silver nanoparticles and their mechanism of action." Sci Rep 13(1): 9202.
47. Zhao, H., H. Su, A. Ahmeda, Y. Sun, Z. Li, M. M. Zangeneh, M. Nowrozi, A. Zangeneh and R. Moradi (2022). "Biosynthesis of copper nanoparticles using
Allium eriophyllum Boiss leaf aqueous extract; characterization and analysis of their antimicrobial and cutaneous wound‐healing potentials." Applied Organometallic Chemistry 36(12): e5587.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Ngbolua et al.
