Biogenic synthesis of ZnO-Ag nanoparticles from the aqueous extract of Chromolaena odorata (L.) R. M. King & H. Robinson (Asteraceae) leaves and inorganic precursors.
PDF (French)

Keywords

Green synthesis
ZnO–Ag
silver doping
Chromolaena odorata
nanoparticles

How to Cite

Biogenic synthesis of ZnO-Ag nanoparticles from the aqueous extract of Chromolaena odorata (L.) R. M. King & H. Robinson (Asteraceae) leaves and inorganic precursors. (2026). REVUE DES SCIENCES DE LA SANTE, 5(1), 1-8. https://doi.org/10.71004/rss.026.v5.i1.47

Abstract

In this study, pure and silver-doped (ZnO–Ag) ZnO nanoparticles were synthesised using a green method involving aqueous extract of Chromolaena odorata as a reducing and stabilising agent and inorganic precursors. Four dopant (silver) concentrations were studied: 0.0%, 0.25%, 0.5% and 0.75%. The biosynthesised nanoparticles were characterised by X-ray diffraction (XRD) spectroscopy, UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), electron microscopy (SEM/TEM) and EDX analysis. The XRD results confirmed the presence of hexagonal würtzite ZnO and a low-intensity peak corresponding to FCC silver for the doped nanoparticles. SEM and TEM images indicate that these nanoparticles are spherical in shape with good particle dispersion. FTIR spectroscopy also confirmed the presence of ZnO in all synthesised powders due to the presence of the band located between 800-450 cm-1, which is characteristic of (Zn−O) bonds in ZnO. The EDS spectra obtained confirmed the presence of pure or doped ZnO by illustrating the peaks related to zinc, oxygen and silver. All prepared samples absorb in the UV region with a shift of the absorption edge towards higher wavelengths for doped powders. These results highlight the significant influence of silver doping on the optical, structural and morphological properties of ZnO.

PDF (French)

References

1. Celebi D., O. Celebi, A. Taghizadehghgalehjoughi, Activity of zinc oxide and zinc borate nanoparticles againt resistant bacteria in an experimental lung cancer model. DARU. J Pharm Sci. 2024, 3, 505-515. https://doi.org/10.1007/s40199-024-00505-2

2. Aldeen T.S., H.E.A. Moamed and M. Maaza, ZnO nanoparticles prepared via a green synthesis approch: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids. 2022, 160, 1103-13. https://doi.org/10.1016/j.jpcs.2021.110313

3. Pankaj Kumar Jha, Chamorn Chawengkijwanich, Chonlada Pokum, Pichai Soison and Kuaanan Techato. Antibacterial Activities of Biosynthesized Zinc Oxide Nanoparticles and Silver-Zinc Oxide Nanocomposites using Camellia Sinensis Leaf Extract. TRENDS IN SCIENCES 2023; 20(3): 5649. https://doi.org/10.48048/tis.2023.5649

4. Adedokun O., B.T. Bello, Y.K. Sanusi, A.O. Awodugba, Effet of precipitating agents on the performance of ZnO nonoparticles based photo-anodes in dye-sensitized solar cells. Surf. Interfaces, 2020, 21, 100656. https://doi.org/10.1016/J.Surfin.2020.100656

5. Ganasan E., H.M. Yusoff, A.A, Azmi, P.W. Chia, S.S. Lam, S.Y. Kan, R.K. Liew, K. Venkateswarlu, & C.K. Teo, Food additives for the synthesis of metal nanoparticles: A review. Environmental Chemistry Letters, 2023, 21(1), 525-538.

6. Krishna P.G., P.P. Anantthaswamy, B.M. Nagabhushana, et al. In vitro antimicrobial, antioxidant and anticancer studies of ZnO nanoparticles synthetized by precipitation method. Advenced Science, Engeneering and Medecine. 2016, 8(4): 306-313. http://doi.org/10.1166/asem.2016.1854

7. Pavithra M., M.R. Jessie. Synthesis of ultrasonic assisted co-precipitated Ag/ZnO nanorods and their profound anti-liver cancer and antibacterial properties. Mater. Sci. Eng. B. 2022, 278,115653. http://doi.org/10.1016/j.mseb.2022.115653

8. Saadia L., A. Noreem, A. Farhat, L. Ghosia, H. Jamilla. Synthesis, characterasation and antibacterial activity of simple ZnO and metal doped ZnO nanoparticles. Pak. Pharm. Sci. (2021), vol. 34, N°5: 1551-1658. http://doi.org/10.36721/pjps.2021.34.5.REG.1651-1658.1

9. Li M., L. Zhu & D. Lin. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. (2011) 45, 1977–1983.

10. Mohamed H.E.A., A. Shakeeb, T. Ali et al. Biosynthesis of Silver Nanoparticles from Hyphaene Thebaica Fruits and Their (in Vitro) Pharmacognostic Potentiel. Materials Research Express. 2019. 6 (10): 1050c9.doi.org/10.1088/2053-1591/ab4217

11. Babu A.T., R.Antony. Green synthesis of silver doped nano metal oxides of zinc copper for antibacterial properties, adsorption, catalytic hydrogenation photodegradation of aromatics. J.Environ. Chem. Eng. 2019, 7, 102840

12. Saha R., K. Subramani, P. M. R. SAK, S. Rangaraj, R. Venkatachalam, Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Prog Org Coat. 2018, 124:80–91. https://doi.org/10.1016/j.porgcoat.2018 08.004.

13. Mtavangu SG, Machunda RL, van der Bruggen B, Njau KN. In situ facile green synthesis of Ag–ZnO nanocomposites using Tetradenia riperia leaf extract and its antimicrobial efficacy on water disinfection. Sci Rep. 2022; 12:15359–72. https:// doi.org/ 10. 1038/ s41598- 022- 19403-1

14. Makiwa S., M.N. Mthiyane, A.C. Ekennia, M. Singh, D.C. Onwudiw . Cytotoxicity and antibacterial effects of silver doped zinc oxide nanoparticles prepared using fruit extract of Capsicum Chinense. Scientific African 17 (2022) e01365 https://doi.org/10.1016/j.sciaf.2022.e01365

15. Riani S., N. B. Moussa et al., Bactericidal activity of ZnO nanoparticles againt multidrug resistant bacteria. Journal of Molecular Liquids. 2023, Vol 387,122596. https://doi.org/10.1016/j.molliq.2023.122596

16. Ekoko G.B., J.L. Muswema, A.K. Mbongo, N.K. Nzazi, F.M.Nduku, D.B. Musengele, P.K. Kidingi, T. Ndonganzadi, P. Mukiatom, Characterization of Multinanoporous Pt-TiO2 Thin Films Fabricated by a Three-Step Electrochemical Technique. American Journal of Nanosciences. 2019, 5(1):9-17. https://doi.org/10.11648/j.ajn.20190501.12

17. Ekoko G.B., J.L. Muswema, O.M. Mvele, N.K. Nzazi, F.M. Nduku, D.B. Musengele, T. Ndonganzadi, P. Mukiatom, G.N. Mata Niasa, Nickel Oxid Nanocrystalline Fabricated Under Gamma Irradiation and Its Photocatalytic Investigation for Textile Azo Dye Degradation.

Advances in Materials. 2019, 8(3), 112-119. https://doi.org/10.11648/j.am.20190803.13.

18. Muswema J. L., G.B. Ekoko, K. K. Lobo, O. M. Mvele, H.M. Kalele, A.K. Mbongo G.N. Mata, Gamma- radiation induced synthesis of spinel Co3O4 Nanoparticles, SN Applied Sciences 2019, (1)333 | https://doi.org/10.1007/s42452-019-0342-6

19. Mata G. N., J.E. Malongwe, P.O. Lohohola, J. L. Muswema, O. M. Mvele, R. I. Ndjoko, H. M. Kalele, D. K. Tshibangu, P.K. Mahuku, G. B. Ekoko, A Friendly Environmental Route for the Fabrication of Spinel Co3O4 Nanorods, Using Inorganic Precursor Salt and Aqueous Extracts of Moringa Oleifera Leaves. South Asian Res J Eng Tech, 2022, 4(2): 31-37.

20. Ndonganzadi T., P.O. Lohohola, G.B. Ekoko, J.S. Kayembe, B.M. Yuyu, P.K.Kidingi, P. Mukiatom, J. Mabunzi, M.Mayindombe, O. Mutombo et L. Masinsanga, Synthèse et caractérisation des nano-cristaux de NiO à partir des extraits aqueux des feuilles de Moringa oleifera et de NiSO4.7H2O comme précurseur. Pistes et Recherches. 2021, 37(1) 141-152.

21. Ndonganzadi T., Muswema L. J., Malongwe K.J., Lohohola O.P., Mvele M.O, Musengele B.D., Mukiatom P., Osobo Y.A., Kasikia G., Mukonkole N.O., Disa-Disa M.P., Bakambo Ekoko B.G. Caractérisation et évaluation in vitro de l’activité antibactérienne de nanoparticules d’oxyde de zinc préparées à base de l’extrait aqueux des feuilles de Chromolaena odorata (L.) R. M. King & H. Robinson (Asteraceae). Journal Africain des Sciences, Vol 1 (2024) 1-10.

22. Poh W.C., H. Norhafiafa and M.Y. Hanis. Electrochemical performance of zinc oxide nanoparticles prepared via green synthesis route using Chromolaena odorata leaves extract as potential anode material in sodium-ion battery. Journal of Sustainability Science and Management (2023) 18 (10): 126-137. http://doi.org/10.46754/jssm.2023.10.008

23. Nurul A.I., A. Nur, A.A. Thifah and al., Electrochemical performance of zinc oxide nanoparticles prepared via green synthesis route using chromolaena odorata leaves extract as potential anode material in sodium-ion battery. Journal of Sustainability Science and Management . 2023, 18(10): 126-137

24. Essien E.R., V.N. Atasie, D.O. Nwude, E. Adekolurejo, F.T. Owoeye. Characterisation of ZnO nanoparticles prepared using aqueous leaf extracts of Chromolaena odorata (L.) and Manihot esculenta (Crantz). S. Afr J Sci. 2022. 118(1/2), Art. #11225.

25. Hasnain, S. Muzanul, U. Hazrat, Biogenitic synthesid and caracterization of antimicrobial and antiparasitic of zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himilayen columbine (Aquilegia pubiflora). Frontiers in Materials. 2020, 7:249. hppts://doi.org/10.3389/fmat.2020.00249

26. Ghdeeb.J.,N.A.Hussain, Antimicrobial activity of ZnO Nanoparticles prepared using a green synthesis approach. Nano Biomedicine and Engineering, 2023, http://doi.org/10.26599/NBE.2023.9290003

27. Shelar S.G., V.K. Mahajan, S.P. Patil, G.H. Sonawane. Effect of doping parameters on photocatalytic degradation of methylene blue using Ag doped ZnO nanocatalyst. SN Applied Sciences. 2020, 2(5). http://doi.org/10.1007/s42452-020-2634-2

28. Tang Q. , H. Xia, W. Liang, X. Huo, et al., Synthesis and characterization of zinc oxide nanoparticles from Morus nigra and its anticancer activity of AGS gastric cancer cells. Journal of Photochemistry and Photobiology, 2019, 202:111698 https://doi.org/10.1016/j. jphotobiol.2019.111698

29. Babu B., T. Aswani, G.T. Rao, R.J. Stella, B.Jayaraja, Ravikumar. J.Magn. (2014) 355:76-80

30. Balogun S.W, Y.K Sanusi, and B.A Agboluaje, Green Synthesis, characterization of Zinc oxide nanoparticles using Chromolaena odorata extract and evaluation of its properties for photoanode of solar cells Materials Science and Engineering (2020)805 : 012003 https://doi.org/10.1088/1757-899X/805/1/01200

31. Sing R., P.B. Barman, D. Shama. Synthesis, structural and optical properties of Ag doped ZnO nanoparticles with enhanced photocatalytic

properties by photo degradation of organic dyes (2017) vol. 28: 5705-5717

32. Pathak T.K., H.C. Swart, R.E. Kroon. Structural and plasmonic properties of noble metal doped ZnO nanomaterials. Phys. B. Mater. (2018) 535:114-118

33. Kulyk B., B. Sahraoui, V. Figà, V. Turko, V. Kapustianik. Influence of Ag, Cu dopants on the second and third harmonic response of ZnO films. J. Alloys. Compd. (2009) 481: 819-825. http://doi.org/10.1016/j.jallcom.2009.03.117

34. Simovic B., D. Poleti, G. Aleksandar, M.J. Scepanovic. Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method. Processing and Application of Ceramics (2017) 11(1): 27-38. http://doi.org/10.2298/PAC1701027S

35. Hossein S.M., I.A. Sarsari, P. Kameli, H. Salamati. Effect of Ag doping on structural, optical and photocatalytic properties of ZnO naparticles. J. Alloys. Compd. (2015) 640: 408-415. http://doi.org/10.1016/j.jallcom.2015.03.136

36. Abdelbaky A.S., A.M. Mohamed, M. Sharaky, N.A. Mohamed and Y.M. Diab. Green approach for the synthesis of ZnO nanoparticles using Cymbopogon citratus aqueous leaf extract: characterization and evaluation of their biological activities. Chemical and Biological Technologies in Agriculture. (2023) 10:63. https://doi.org/10.1186/s40538-023-00432-5

37. Xaviour J., S. Sreelekshmi, J. Joseph, S.A. Fathima and T. Sajini. Eco-friendly synthesis and enhanced antibacterial action of bimetallic Ag/ZnO nanoparticles using Hylocereus costaricensis stem extract. RSC Sustain. 2024, 2, 3077-3089.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2026 NDONGANZADI et al.